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Abstract. The system of an atom couples to two distinct optical cavities with decoherence is studied by
making use of a dynamical algebraic method. We adopt the concurrence to characterize the entanglement
between atom and cavities or between two optical cavities in the presence of the phase decoherence or
dissipation. It is found that the entanglement between atom and cavities can be controlled by adjusting
the detuning parameter. We show that even if the atom is initially prepared in a maximally mixed state,
it can also entangle the two mode cavity fields. Finally, the Bell violation of the cavity fields is discussed,
and it is shown that both the detuning and decoherence can deteriorate the maximal amount of violation
of Bell inequality for two mode cavity fields during the evolution.

PACS. 03.67.Mn Entanglement production, characterization and manipulation – 03.67.-a Quantum in-
formation – 03.65.Fd Algebraic methods

1 Introduction

Quantum entanglement was first introduced by Einstein,
Podolsky and Rosen (EPR) in their famous paper in
1935 [1]. Recently, it has been recognized that entangle-
ment can be used as an important resource for quan-
tum information processing [2]. Entanglement can exhibit
the nature of a nonlocal correlation between quantum
systems that have no classical interpretation. However,
real quantum systems will unavoidably be influenced by
surrounding environments. The interaction between the
environment and quantum systems of interest can lead to
decoherence. It is therefore of great importance to pre-
vent or minimize the influence of environmental noise in
the practical realization of quantum information process-
ing. In order to prevent the effect of decoherence, sev-
eral approaches have been proposed such as quantum
error-correcting approach [3], quantum error-avoiding ap-
proach [4], and loop control strategies [5], etc.

The manipulation of quantum entanglement with
atoms and photons in the cavity has been extensively in-
vestigated [6]. Instead of attempting to shield the system
from the environmental noise, Plenio and Huelge [7] use
white noise to play a constructive role and generate the
controllable entanglement by incoherent sources. Similar
work on this aspect has also been considered by other au-
thors [8]. In this paper, we investigate an atom couples
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to two distinct optical cavities with the phase decoher-
ence or dissipation and show how the entanglement be-
tween atom and cavities or between two optical cavities
can be generated in the presence of the phase decoher-
ence or dissipation. In Section 2, we study the system in
the presence of phase decoherence by making use of the
dynamical algebraical method [9,10] and find the exact
solution of the master equation for the system. The exact
solution is then used to discuss the influence of the phase
decoherence on the probability of occupation in ground
state. In Section 3, we use the concurrence to characterize
the entanglement between atom and cavities or between
two optical cavities by means of the exact solution for the
system. It is shown that the entanglement between atom
and cavities can be controlled by adjusting the detuning
parameter. We proceed to calculate the generation rate of
entanglement for the system and find that phase decoher-
ence causes a larger rate than pure unitary evolution in
some situations. Furthermore, we show that even if the
atom is initially prepared in a maximally mixed state, it
can also entangle the two mode cavity fields. In Section 4,
the Bell violation of two cavity fields is investigated, and
the entanglement versus Bell violation is also discussed.
In Section 5, we investigate the system in the large detun-
ing limit by extending our treatment to incorporate the
dissipative processes via allowing for the radiative decay
of atom as well as cavity field relaxation. A conclusion is
given in Section 6.
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Fig. 1. Proposed experimental set-up. A two-level atom is
surrounded by two optical cavities.

2 Solution of an atom couples to two distinct
optical cavities with phase decoherence

We consider the situation depicted in Figure 1, that an
atomic system is surrounded by two distinct optical cavi-
ties initially prepared in the vacuum state. The Hamilto-
nian for the system can be described by [7] (� = 1),

H = ωaa†a + ωbb
†b +

ω0

2
(|e〉〈e| − |g〉〈g|)

+ ga(a|e〉〈g| + a†|g〉〈e|) + gb(b|e〉〈g| + b†|g〉〈e|), (1)

where |e〉 and |g〉 are the excited state and the ground state
of the two-level atom, ω0 is atomic transition frequency,
ga(b) is the coupling constant of the atom to cavity modes
a(b), and a (a†), b (b†) are the annihilation (creation) oper-
ators of a mode of frequency ωa and b mode of frequency
ωb, respectively. In reference [7], Plenio and Huelge use
white noise as the actual driving force of the system and
study numerically the entanglement between two optical
cavities for the system in the resonant case. Here, we in-
vestigate analytically the entanglement between atom and
cavities or between two optical cavities in the presence of
phase decoherence by making use of the dynamical alge-
braical method. To reduce the complexity, we consider the
case of ωa = ωb = ω. It is easy to verify that there exists
two constants of motion in Hamiltonian (1),

K1 =
1
g2

(
g2

aa†a + g2
b b†b

)
+

gagb

g2

(
a†b + ab†

)

+
1 + |e〉〈e| − |g〉〈g|

2
,

K2 =
1
g2

(
g2

ab†b + g2
ba†a

) − gagb

g2

(
a†b + ab†

)
, (2)

where g =
√

g2
a + g2

b . It is easily proved that the opera-
tor K1 and K2 commute with Hamiltonian (1). We then

introduce the operators as follows

S+ =
(gaa + gbb)|e〉〈g|

g
√

K1

, S− =
(gaa† + gbb

†)|g〉〈e|
g
√

K1

,

S0 =
1
2
(|e〉〈e| − |g〉〈g|). (3)

It can be shown that the operators Si (i = 0,±) satisfy
the following commutation relations

[S0, S±] = ±S±, [S+, S−] = 2S0, (4)

where S0 and S± are the generators of the SU(2) algebra.
In terms of the SU(2) generators, we can rewrite Hamil-
tonian (1) as

H = ω

(
K1 + K2 − 1

2

)
+ ∆S0 + g

√
K1(S+ + S−), (5)

where ∆ = ω0 − ω denotes detuning. Firstly, we consider
the pure phase decoherence mechanism only. In this situa-
tion, the master equation governing the time evolution for
the system under the Markovian approximation is given
by [11]

dρ

dt
= −i[H, ρ] − γ

2
[H, [H, ρ]], (6)

where γ is the phase decoherence coefficient. Noted that
the equation with the similar form has been proposed to
describing the intrinsic decoherence [12]. This equation
has also been utilized to describing the decoherence for a
single trapped ion due to intensity and phase fluctuations
in the exciting laser pulses [13]. The master equation (6)
can be derived from the interaction between the system of
interest and the reservoir [14]. For clarifying it, we consider
the following Hamiltonian (� = 1)

HP = H +
∑

i

(
p2

i

2mi
+

1
2
miω

2
i x2

i

)
+ H

∑

i

Dixi

+ H2
∑

i

|Di|2
2miω2

i

, (7)

where the first term is the Hamiltonian (1) and the sec-
ond term is the Hamiltonian of the reservoir. The third
term describes the interaction between the system of in-
terest and the reservoir with the coupling constant Di, and
the last one is the renormalization term. Since the Hamil-
tonian of system H commutes with HP , the interaction
with the reservoir can only induce phase decoherence but
not dissipation. Under the Markovian approximation, the
master equation (6) describing the phase decoherence of
the system (1) can be obtained [14]. The formal solution
of the master equation (6) can be expressed as follows [9],

ρ(t) =
∞∑

k=0

(γt)k

k!
Mk(t)ρ(0)M †k(t), (8)

where ρ(0) is the density operators of the initial atom-field
system and Mk(t) is defined by

Mk(t) = Hk exp(−iHt) exp
(
−γt

2
H2

)
. (9)
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Mk(t) =
1

2
[f+(K1, K2)]

k exp [−if+(K1, K2)t] exp

[
−γt

2
[f+(K1, K2)]

2

]

+
1

2
[f−(K1, K2)]

k exp [−if−(K1, K2)t] exp

[
−γt

2
[f−(K1, K2)]

2

]

+
1

2

[
∆

Ω(K1)
(|e〉〈e| − |g〉〈g|) +

2Hint

Ω(K1)

] {

[f+(K1, K2)]
k exp [−if+(K1, K2)t] exp

[
−γt

2
[f+(K1, K2)]

2

]

− [f−(K1, K2)]
k exp [−if−(K1, K2)t] exp

[
−γt

2
[f−(K1, K2)]

2

] }

, (10)

ρ (t) =
1

2

[
1 +

∆2

Ω2
+

(
1 − ∆2

Ω2

)
cos Ωt exp

(
−γt

2
Ω2

)]
|00〉〈00| ⊗ |e〉〈e|

+
g

Ω

{
∆

Ω

[
1 − cos Ωt exp

(
−γt

2
Ω2

)]
+ i sin Ωt exp

(
−γt

2
Ω2

)}
|00〉〈ϕ| ⊗ |e〉〈g|

+
g

Ω

{
∆

Ω

[
1 − cos Ωt exp

(
−γt

2
Ω2

)]
− i sin Ωt exp

(
−γt

2
Ω2

)}
|ϕ〉〈00| ⊗ |g〉〈e|,

+
2g2

Ω2

[
1 − cos Ωt exp

(
−γt

2
Ω2

)]
|ϕ〉〈ϕ| ⊗ |g〉〈g| (12)

By means of the SU(2) dynamical algebraic structure, we
obtain the explicit expression for the operator Mk

see equation (10) above

where

f±(K1, K2) = ω

(
K1 + K2 − 1

2

)
± 1

2
Ω(K1),

Ω(K1) = (∆2 + 4g2K1)1/2,

Hint = ga(a|e〉〈g|+a†|g〉〈e|)+gb(b|e〉〈g|+b†|g〉〈e|).
(11)

We assume that the cavity fields are prepared initially in
vacuum state |00〉, and the atom is prepared in the excited
state |e〉. The time evolution of ρ(t) can be written as,

see equation (12) above

where

|ϕ〉 =
1
g
(ga|10〉 + gb|01〉), Ω = (∆2 + 4g2)1/2. (13)

The |ϕ〉 in equation (13) is a single-photon entangled
state. Recently, much attention has been paid to inves-
tigate the preparation of the single-photon maximally en-
tangled state [15] due to its potential applications in quan-
tum information processing. It is noted that when the
two coupling coefficients ga = gb, the state |ϕ〉 is noth-
ing but a single-photon maximally entangled state. We
then show that if a projective measurement on the atom
in the {|e〉, |g〉} basis is made, the atom will be projected
on the ground state |g〉 with the probability Pg in the case
of ∆ = 0,

Pg =
1
2

[
1 − cos(2gt) exp(−2γg2t)

]
. (14)

Fig. 2. The ground state probability Pg of the atom is plotted
as a function of the rescaled time 2gt/π for various values of
phase decoherence rate: γ = 1 (solid line), γ = 0 (dash line),
γ = 0.05 (dot line) and γ = 0.1 (dash dot line) with ga =
gb = 1 and ∆ = 0. When t = π/2g, we can see that the value
of Pg with γ = 0 (dash line) is one, which implies that two
distinct cavity fields are in the maximally entangled single-
photon state.

If the measurement result is |g〉, the two distinct cavity
fields are in the single-photon maximally entangled state√

2(|10〉 + |01〉)/2. In Figure 2, we plot the probability
Pg as the function of time t for different values of phase
decoherence rate γ. It is shown that if the decay rate γ
is zero, the two distinct cavity fields are in the maximally
entangled single-photon state at the time t = π/2g with
unit probability. We can also see that probability Pg in the
phase decoherence case in the short time is larger than the
one in the pure unitary evolution.
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3 The entanglement between atom
and cavities or two optical cavities

In order to quantify the degree of entanglement, several
measures [16] of entanglement have been introduced for
both pure and mixed quantum states. In this section, we
adopt the concurrence to calculate the entanglement be-
tween atom and cavities or between two optical cavities.
The concurrence related to the density operator ρ of a
mixed state is defined by [17]

C(ρ) = max{λ1 − λ2 − λ3 − λ4, 0}, (15)

where the λi (i = 1, 2, 3, 4) are the square roots of the
eigenvalues in decreasing order of magnitude of the “spin-
flipped” density operator R

R = ρ(σy ⊗ σy)ρ∗(σy ⊗ σy), (16)

where the asterisk indicates complex conjugation. The
concurrence varies from C = 0 for an unentangled state
to C = 1 for a maximally entangled state.

We first investigate the quantum entanglement be-
tween the atom and cavity modes. If we deal with the
two cavity modes as system B, and the atom as system A,
then ρ(t) in equation (12) can be thought of as the den-
sity operator of a two-qubit mixed state. In the basis
|11〉s ≡ |00〉 ⊗ |e〉, |10〉s ≡ |00〉 ⊗ |g〉, |01〉s ≡ |ϕ〉 ⊗ |e〉,
|00〉s ≡ |ϕ〉⊗|g〉, the explicit expression of the concurrence
CAB describing the entanglement between the system A
and system B can be found to be,

CAB =
2g

Ω

{
∆2

Ω2

[
1 − cosΩt exp

(
−γt

2
Ω2

)]2

+ sin2 Ωt exp(−γtΩ2)

}1/2

. (17)

From equation (17), we can see that the detuning ∆ plays
a key role in the quantum entanglement between the atom
and cavity modes. If the decoherence rate γ is not equal to
zero, the concurrence CAB remains in the value 2g|∆|/Ω2

in the limit t → ∞. In the strong coupling case, i.e.,
ga, gb � ∆, the concurrence CAB of the stationary state
ρ(∞) is approximately |∆|/(2g). On the other hand, in
the large detuning limit, the concurrence CAB of the sta-
tionary state is approximately 2g/|∆|. In Figure 3, the
concurrence CAB is plotted as a function of the time t
and decoherence rate γ. If the decoherence rate is small
enough, the entanglement between the atom and two cav-
ities oscillates with the time. Otherwise, it rapidly evolve
into a stationary value in the off-resonant case. We also
show the concurrence CAB as a function of the detuning
parameter ∆ and the decoherence rate γ at a fixed time
in Figure 4. It is shown that the entanglement heavily de-
pends on the detuning parameter, which implies one can
control the entanglement via adjusting the detuning pa-
rameter. In the limit t → ∞, the stationary state concur-
rence CAB firstly increases with |∆|, and reaches the max-
imal value 1/2 at |∆| = 2g, then decreases with |∆|. Now,

Fig. 3. The concurrence CAB is plotted as a function of the
time t and the phase decoherence rate γ for ga = gb = 1 and
∆ = 5. It is shown that, if γ � 1, the entanglement between
the atom and two cavities oscillates with the time. Otherwise,
it rapidly evolve into a stationary value.

Fig. 4. The concurrence CAB is plotted as a function of the
detuning parameter ∆ and the phase decoherence rate γ for
ga = gb = 1 and t = 10. We can see that the entanglement
heavily depends on the detuning parameter.

we turn our discussion to the resonant case, i.e. ∆ = 0. In
this case, CAB = | sin(2gt)| exp(−2g2γt).

In reference [18], it has been proved that for any pure
states of three qubits 1, 2 and 3, the entanglement is dis-
tributed following the inequality for the squared concur-
rence

C2
12 + C2

13 ≤ C2
1(23), (18)

where C1,(23) is the single-qubit concurrence defined as
the concurrence between the qubit 1 and the rest of
qubits (2, 3). For any mixed states of three qubits 1, 2,
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and 3, there is analogous inequality for the squared con-
currence as follows

C2
12 + C2

13 ≤ 〈C2〉min
1(23), (19)

where 〈C2〉min
1(23) is the minimum of average over all pos-

sible pure state decomposition of the three qubits mixed
state [18]. Here, we may expect that the pair entangle-
ment between the atom and the a(b) mode cavity field is
determined by the coupling coefficient ga(gb). It is easy to
prove that there exist the simple relations,

C2
AB = C2

a + C2
b , (20)

and Ca/Cb = ga/gb, where Ca(Cb) is the concurrence
describing entanglement between the atom and the a(b)
mode cavity field. Thus, our results are in agreement with
those obtained in reference [18].

Next, we investigate the entanglement between light
fields of two distinct cavities by tracing out the atom. By
tracing out the degree of freedom of the atom in density
matrix ρ(t) in equation (12), we obtain the reduced density
matrix ρB(t) describing the two light fields as follows,

ρB (t) =

1
2

[
1 +

∆2

Ω2
+

(
1 − ∆2

Ω2

)
cosΩt exp

(
−γt

2
Ω2

)]
|00〉〈00|,

+
2g2

Ω2

[
1 − cosΩt exp

(
−γt

2
Ω2

)]
|ϕ〉〈ϕ|. (21)

Then, the concurrence CB characterizing the entangle-
ment of two light fields can be derived as

CB =
4|gagb|

Ω2

[
1 − cosΩt exp

(
−γt

2
Ω2

)]
. (22)

From equation (22), we can see that the concurrence CB

is equal to zero at time t = 2nπ/Ω, (n = 0, 1, 2...) in
the case of γ = 0. At these specific time, the two cav-
ity modes have no pair entanglement. However, in the
case with γ 
= 0, the two cavity modes is always en-
tangled for the time t > 0. In Figure 5, we plot the
concurrence CB as the function of time t and decoher-
ence rate γ. It is quite clear from Figure 5 that the
entanglement between the two distinct light fields in-
creases with the phase decoherence rate γ within the time
range 2nπ/

√
∆2 + 4g2 ≤ t < (2n + 1/2)π/

√
∆2 + 4g2

or (2n + 3/2)π/
√

∆2 + 4g2 < t ≤ (2n + 2)π/
√

∆2 + 4g2

(n = 0, 1, 2, ...). The concurrence CB is displayed as a func-
tion of the decoherence rate γ for three different values of
the detuning parameters at a fixed time in Figure 6. From
Figure 6, we see that the concurrence increases with the
decoherence rate γ at a fixed time. One important point
should be mentioned here. Though the entanglement in-
creases with γ at some fixed times, it does not mean that
phase decoherence can improve the maximal value of en-
tanglement achieved during the evolution in this situa-
tion. The stationary state entanglement of the two cavity
modes measured by concurrence is 4gagb/(∆2 +4g2). This

Fig. 5. The concurrence CB is plotted as a function of the
time t and the phase decoherence rate γ for ga = gb = 1 and
∆ = 0.

Fig. 6. The concurrence CB is plotted as a function of the
phase decoherence rate γ for various values of the detuning
parameter: ∆ = 0 (solid line), ∆ = 1 (dash line) and ∆ = 2
(dot line) with t = 2 and ga = gb = 1.

means that the stationary state entanglement achieves its
maximal value 1/2 in the resonant case with ga = gb.

In order to illustrate how phase decoherence can ac-
celerate the entanglement generation of two cavity modes
at some specific times, we calculate the generation rate
of entanglement ĊB, the partial derivative of concurrence
CB over the time t. Our result indicates ĊB is equal to
2|gagb|γ at the initial time t = 0 in this case.

At the end of this section, we discuss how much en-
tanglement between the two mode cavity fields can be
achieved if the initial atom is prepared in a thermal
state and the cavity fields are prepared in the vacuum
states. We assume that the initial atom is in the state
ρA(0) = δ|g〉〈g| + (1 − δ)|e〉〈e|, where 0 ≤ δ ≤ 1, and the
cavity fields are still in the vacuum state |00〉. Our calcula-
tion shows that C′

AB = (1 − δ)CAB and C′
B = (1 − δ)CB .

This means that even if the initial atom is prepared in
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a maximally mixed state (1/2)|g〉〈g| + (1/2)|e〉〈e|, it can
still entangle the two mode cavity fields. In this case, the
concurrence C′

B equals 1/4 in the steady state for ∆ = 0
and ga = gb.

4 The Bell violation of two mode cavity fields

Since the classic works of EPR [1] and Bell [19], quantum
nonlocality have been recognized as a crucial notion in
modern understanding of quantum world. In the present
paper, we focus our attention on the Bell violation of two
mode cavity fields. The reduced density matrix ρB(t) in
equation (21) describing the two cavity fields by tracing
out the atom in the whole system can be regarded as a
two-qubit mixed state. The most commonly discussed Bell
inequality is the CHSH inequality [19,20]. The CHSH op-
erator reads

B̂ = �a · �σ′ ⊗ (�b + �b′) · �σ′ + �a′ · �σ′ ⊗ (�b − �b′) · �σ′, (23)

where �a, �a′,�b, �b′ are unit vectors. The three components
σ′

x, σ′
y and σ′

z of �σ′ are defined by σ′
x ≡ |1〉〈0| + |0〉〈1|,

σ′
y ≡ −i|1〉〈0| + i|0〉〈1|, and σ′

z ≡ |1〉〈1| − |0〉〈0|. In the
above notation, the Bell inequality reads

|〈B̂〉| ≤ 2. (24)

The maximal amount of Bell violation of a state ρ is given
by [21]

B = 2
√

λ + λ̃, (25)

where λ and λ̃ are the two largest eigenvalues of T †
ρTρ.

The matrix Tρ is determined completely by the correla-
tion functions being a 3 × 3 matrix whose elements are
(Tρ)nm = Tr(ρσ′

n ⊗ σ′
m), where, σ′

1 ≡ σ′
x, σ′

2 ≡ σ′
y, and

σ′
3 ≡ σ′

z. We call the quantity B the maximal violation
measure, which indicates the Bell violation when B > 2
and the maximal violation when B = 2

√
2. For the density

operator ρB(t) in equation (21) characterizing the time
evolution of two cavity fields, λ + λ̃ can be written as
follows

λ + λ̃ = ς + max[ς, ζ], (26)

where

ς =
16g2

ag
2
b

Ω4
(1 − e−

γt
2 Ω2

cosΩt)2 (27)

and

ζ =
(

∆2

Ω2
+

4g2

Ω2
e−

γt
2 Ω2

cosΩt

)2

. (28)

From equations (25–28), it is easy to see the violation of
Bell inequality for two mode cavity fields. In Figure 7, the
maximal amount of violation B is plotted as a function of
time t. It is shown that both the detuning and decoherence
can deteriorate the maximal amount of violation of Bell
inequality for two mode cavity fields during the evolution.

Recently, Verstraete et al. investigated the relations
between the violation of the CHSH inequality and the
concurrence for systems of two qubits [22]. The relation

Fig. 7. The maximal amount of violation B is plotted as func-
tions of time t with ga = gb = 1 for four different cases: ∆ = 0
and γ = 0 (solid line); ∆ = 1 and γ = 0 (dash line); ∆ = 0
and γ = 0.1 (dot line); ∆ = 1 and γ = 0.1 (dash dot dot
line). Comparing the solid line and other lines in the regime
with B > 2 in this figure, we find that both the detuning and
decoherence can deteriorate the maximal amount of violation
of Bell inequality. Cautious readers maybe conjecture that the
dash line may exceed the solid line in the further evolution
beyond the range of this figure. This is possible. Nevertheless,
our calculations show that the maximal values of the maximal
violation B at the solid line achieved in the whole evolution is
larger than the one at the dash line.

can be written as max[2, 2
√

2C] ≤ B ≤ 2
√

1 + C2 for
those states violating the CHSH inequality. They showed
that the maximal value of B for given concurrence C
is 2

√
1 + C2, which can be achieved by the pure states

and some Bell diagonal states. If the given concurrence
C is larger than

√
2/2, the minimal value of B is 2

√
2C,

which can be achieved by the maximal entangled mixed
state. Furthermore, the entangled two qubits state with
the concurrence C ≤ √

2/2 may not violate any CHSH in-
equality, even after all possible local filtering operations,
except their Bell diagonal normal form does violate the
CHSH inequalities [21]. In what follows, we show that,
even though two cavity fields is always entangled during
the time evolution, they violate the CHSH inequality only
in the cases with some specific values of the detuning pa-
rameter ∆ and the phase decoherence rate γ. In Figure 8,
we plot CM (defined as the maximal values of the concur-
rence CB achieved during the decoherence process) and
BM (defined as the maximal values of the maximal vio-
lation B during the decoherence process) as the functions
of the detuning parameter ∆ and the phase decoherence
rate γ with ga = gb = 1. It is shown that both CM and
BM decrease with ∆ and γ. After going beyond certain
critical value of ∆ and γ, the two cavity fields does not
exhibit any Bell violation at any moments of the evolu-
tion. At the end of this section, we should claim that in
the physical set-up considered in this paper, the violation
of CHSH-inequality serves only as an evidence of entan-
glement. Since two cavities are not truly spatial separated,
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Fig. 8. CM and BM are plotted as the functions of the de-
tuning parameter ∆ and the phase decoherence rate γ with
ga = gb = 1.

the Bell violation of two cavity fields discussed above can
not quantify the usual nonlocality.

5 The entanglement between two optical
cavities in the presence of dissipation

In this section, we investigate the system (1) in the large
detuning limit by extending our previous treatment to in-
corporate the dissipative processes via allowing for the
radiative decay of atom as well as cavity field relaxation.
In reference [7], the authors had studied a similar system
in the resonant case. The master equation for the total
system density operator is

dρ

dt
= −i[H, ρ] + Lcavρ + Latρ, (29)

where

H = ωa†a + ωb†b +
ω0

2
(|e〉〈e| − |g〉〈g|)

+ g(a†|g〉〈e| + a|e〉〈g|) + g(b†|g〉〈e| + b|e〉〈g|). (30)

The Liouvilleans Lcavρ and Latρ are given by

Lcavρ = κ(2aρa† − a†aρ− ρa†a) + κ(2bρb† − b†bρ− ρb†b),
(31)

and

Latρ = Γ (2|g〉〈e|ρ|e〉〈g| − |e〉〈e|ρ − ρ|e〉〈e|) (32)

where Γ describes the spontaneous decay strength of the
atom, and κ is the decay coefficient of the cavity. Here,
for simplicity, we assume that two cavities have the same
decay coefficient.

In the large detuning limit, there is no energy exchange
between the atom and the cavities. Now, we assume that
the atom is initially in the ground state. As the atom
will then never be populated, we can disregard the degree
of freedom of the atom in the following calculation. It is
assumed that two cavities are initially in the pure product
state |1〉a ⊗ |0〉b. Then, the explicit analytical solution of
the master equation (29) can be obtained as follows,

ρ(t) = ρ11(t)|1〉aa〈1| ⊗ |1〉bb〈1| + ρ22(t)|1〉aa〈1| ⊗ |0〉bb〈0|
+ ρ33(t)|0〉aa〈0| ⊗ |1〉bb〈1|+ρ44(t)|0〉aa〈0| ⊗ |0〉bb〈0|
+ ρ23(t)|1〉aa〈0| ⊗ |0〉bb〈1|+ρ32(t)|0〉aa〈1| ⊗ |1〉bb〈0|

(33)

where

ρ11(t) = 0,

ρ22(t) =
1
2

[
1 + cos

2g2t

∆

]
e−2κt,

ρ33(t) = +
1
2

[
1 − cos

2g2t

∆

]
e−2κt

ρ44(t) = 1 − e−2κt;

ρ23(t) = − i

2
e−2κt sin

2g2t

∆
,

ρ32(t) =
i

2
e−2κt sin

2g2t

∆
. (34)

It is straightforward to compute analytically the concur-
rence for the density matrix ρ(t) in equation (33), and
the concurrence C(t) related to the density matrix ρ(t) is
found to be

C(t) = e−2κt

∣
∣
∣
∣sin

2g2t

∆

∣
∣
∣
∣ , (35)

where |x| gives the absolute value of x. From equa-
tion (35), we can see that the entanglement between two
cavity exhibits the damped oscillation, and eventually, is
completely destroyed by the cavity decay. The calcula-
tions presented in this paper can also be applied to the
situation when the atom interacts with two orthogonal
modes of a single cavity, which has been investigated by
Rauschenbeutel et al. in the last paper of reference [15].

6 Conclusion

In this paper, we firstly investigate analytically the entan-
glement between atom and cavities or between two optical
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cavities in the presence of phase decoherence by making
use of the dynamical algebraical method. It is found that
the entanglement between atom and cavities can be con-
trolled by adjusting the detuning parameter. Furthermore,
we show that even if the atom is initially in a maximally
mixed state, it can also entangle two mode cavity fields ini-
tially prepared in vacuum state. We also investigate the
Bell violation of two mode cavity fields and find that both
the detuning and decoherence can deteriorate the maximal
amount of violation of Bell inequality for two mode cav-
ity fields during the evolution. Finally, we investigate the
system in the large detuning limit by extending the previ-
ous treatment to incorporate the dissipative processes via
allowing for the radiative decay of atom as well as cavity
field relaxation. It is shown that the entanglement between
two cavity exhibits the damped oscillation, and eventually,
is completely destroyed by the dissipative process of the
cavities. The approach adopted here can be employed to
investigate the entanglement between two optical cavities
mediated by a two-level atom in those cases, in which the
two mode cavity fields are initially prepared in another
separable states.

This project was supported by the National Natural Science
Foundation of China (Project No. 10174066).
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